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A Big Gedanken Experiment

• Large-scale quantum computers
• Do not exist but not known to violate underlying physics 
• Justified by entirely new (fascinating) form of computation, big challenges

• George Bernard Shaw, 1938
• “You have nothing to do but mention the quantum theory and people will take your 

voice for the voice of science and believe anything”

• Scott Aaronson, MIT computer scientist, 2011
• “Quantum Mechanics, contrary to its reputation, is actually really simple, once you take 

all the Physics out.”

• Richard Feinman, 1965 
• “I think I can safely say that nobody understands quantum mechanics.”
• What else did he say?



Outline (Sharp Left Turn)

• Qubits, Quantum State
• Quantum Circuits
• Q Algorithms
• Q Compilers (QEC, Circuit Synth)
• Runtime Models
• C Microarchitecture Ctrl

Thomas Barbey photography
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Viewpoint: (Future) Quantum Computer Design 
(Much) More Than Quantum Hardware Design 

• Runs a quantum 
algorithm on quantum 
hardware 

• Controlled by classical 
computer - feeds it with 
things to do (Q circuits)

• Q circuits - Q compiler 
generated – transforms 
state of special kind of 
bits called qubits

Part of Figure from  (Haner, 2016)
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Qubits, Quantum Information 

• A classical bit can be 0 or 1. 

• A qubit is a two-level quantum system. Its quantum state is a 
superposition of 0 and 1 states.
• N = 1: |Ψ�= c0|0�+ c1|1�Dirac “ket” notation
• N = 2: |Ψ� = c0|00� + c1|01� + c2|10� + c3|11�

• ci - complex coefficients called amplitudes; |00�etc., standard basis states

• Why noteworthy? 
• N qubits can “store” exponentially more  info than classical N bits due to superposition 

=> enables Quantum parallelism 
• Wave-like properties => non-classical operations like entanglement, interference 

(1)



Superposition: Imagine You Cannot Make Up Your 
Mind on Deserts, State. Which Are You Inclined to 
Get? 

I00�
I01�

I10�

I11�

?



Qubits, Quantum Information contd.

• How to implement a qubit?
• Clockwise and counterclockwise current in a superconducting circuit 
• Up and down electron spin in a uniform magnetic field 
• Horizontal and vertical polarization of a photon 
• Ground and excited state of a trapped ion

• Issues
• Subject to quantum noise or decoherence => fragile
• Output is only classical – so called measurements necessary to read out 



Vector Representation of State

• State of a qubit can also be represented as a two dimensional complex 
vector space

• where |0⟩ and |1⟩ are the basis states of a two-dimensional complex vector space and α, 
β ∈ C 

• For two qubits, the basis states are all possible configurations of two 
classical bits, i.e. |00⟩, |01⟩, |10⟩, and |11⟩. A general two-qubit state:



State of N-qubit System

• The state of a general n-qubit system can be an arbitrary superposition 
over all 2n computational basis states, i.e., 

•

!"
!#
!$!%
…

!$'(#
• Complex amplitudes ci need to satisfy the normalization condition:

• Probability of measuring a given state is equal to the squared modulus of 
the amplitude associated with that state. Bohr’s rule. 

vectorDirac’s



Joint Quantum State from Individual States

• Example two qubits: 
• |α⟩ := α0|0⟩+α1|1⟩ and |β⟩ := β0|0⟩+β1|1⟩,
• the state of the entire system is the tensor product of the two individual states

• which corresponds to the Kronecker product in vector notation 

• Or, 

• = α0β0 |00⟩ + α0β1 |01⟩ + α1β0 |10⟩ + α1β1 |11⟩ in Dirac’s 



Block Sphere Representation of a Qubit

• Intuitive to understand quantum 
transformations

• | ⟩# = cos () | ⟩0 + ,-.sin () | ⟩1

• The state is visualized as a 
point/vector on the sphere. 

• A gate is a transformation to 
another point/vector.

(Abe, Keio U, 2005)



Qubit Gates

• A gate is a unitary transformation (thus reversible) on the quantum state
• |ψ⟩ → U|ψ⟩ = |ψ’⟩
• U is the unitary operator or matrix 

• A unitary quantum operation on n qubits can be written as a matrix of 
dimension 2n ×2n. 



Some Important Q Gates



Gates with Quirk Circuit Simulator 

• Created to show effect with Bloch

Phase Shift
(Z, S, T)

(X)

(Hadamard)



Two-input 
CNOT 

3-input CCNOT 
or Toffoli

Nothing happens on 3rd

Inverts on 3rd qubit



SWAP, QFT/QFT-1, Reversibility

SWAP



What is Needed in a Q Computer?
Quantum Universality Q Gate Sets
• All you ever need for a quantum computer - could approximate any other 

quantum gate (unitary operation) at any precision
• Toffoli and Hadamard already constitute a quantum universal set

• Other proven Q universal sets exist:
• Hadamard, S, T, and CNOT; Toffoli, Hadamard, and π/4 –gate; CNOT, Hadamard, and π/8 

–gate; Three-qubit Deutsch gate,…

• Solovay-Kitaev Theorem, any universal set of gates can simulate any 
other with at most a polynomial increase in the # of gates

• If we're doing complexity theory, it really doesn't matter which universal gate set.
• If we are designing a quantum computer it makes a lot of difference!

http://www.qinfo.org/people/nielsen/blog/archive/notes/arxiv_0505030_solovay_kitaev.pdf


Quantum Circuits

• Sequence of quantum gates, each performing a unitary transformation 
on the Q state of registers

• Same number of inputs as outputs
• No loops! No cloning! But control flow...

• Read left to right; wires are qubits and symbols on each wire are gates; 
gates can act on one or more qubits
• Hard to implement many-qubit gates …so often everything is built up from smaller 

gates (just like classical). E.g., n-QFT O(n2) in H, Ctrl phase shift gates
• Connectivity – not all qubits may be used in CNOT
• QEC – use many qubits as one logical one



Game of Table Soccer (w/ Block Sphere)?

State (Bloch 
Sphere)
Measured?

Q 
Circuit?

Q Gate?

Q 
Algorithm



Let’s Analyze a 1st Simple Circuit: 
(CNOT on joint two-qubit, then NOT on top)

• Applying CNOT: matrix-vector multiplication using the unitary matrix of 
CNOT and joint input state vector

• Next, apply NOT on first qubit only 

Q Circuit
|⍦in ⟩ =α0β0 |00⟩ + α0β1 |01⟩ + α1β0 |10⟩ + α1β1 |11⟩|⍦in⟩ |⍦k⟩ |⍦out⟩

|⍦in⟩ |⍦k⟩



Q Circuit Example Contd.

• NOT or X gate is applied on top qubit, nothing on bottom

|⍦out⟩ =

|⍦out⟩|⍦k⟩

|⍦k⟩ |⍦out⟩

(1)

(2)



Quantum Parallelism - Intuition

• As a consequence of the linearity of quantum mechanics, gates are 
simultaneously applied to all basis states of a superposition at once
• Classical SIMD operations, e.g., multimedia instruction set (ISA) 

• If, for example, n qubits are in a complete superposition over all 2n basis 
states, all possible outputs of a function f(x) can be calculated using only 
one function call:

•

• Key challenge: measurement collapses result to single basis state
• To overcome this, quantum algorithms employ clever reduction schemes, making use of 

quantum interference effects 

(1)



Outline (Beyond the Tangible?)

• Qubits, Quantum State
• Quantum Circuits
• Q Algorithms
• Q Compilers (Q Circuit Synth)
• Runtime Models
• Classical Microarchitecture

Figure from (Fu, 2017)



David Deutsch Algorithm and Circuit, 1985

• Determine if a single-variable Boolean function f(x) is constant (f(0)=f(1))  
or balanced (f(0) ≠ f(1)).
• Classical version requires TWO runs of the algorithm 

• Q Algorithm can evaluate f(0) and f(1) simultaneously 
• IDEA: quantum computer could extract the value of f(0)⊕f(1) at once (note this is 0 if 

f(x) constant and 1 if balanced)

Balanced = |1⟩
Constant = |0⟩

(Hayes, 2003)



Deutsch Algorithm Contd.

• Hadamards to create a superposition of states
• After that a measurement would yield 50% likely one of the basis states

• Creates joint state of |⍦1�(∣y⟩=H∣1⟩, ∣x⟩=H∣0⟩)
• We then utilize a custom unitary transformation Uf to compute f(x)

• Input is top qubit, bottom output has y xor f(x) 

• Hadamard is used again to interfere |⍦2�states, yielding |⍦3�

• Measure top qubit (aka control qubit) for result

Balanced = |1⟩
Constant = |0⟩



Deutsch Algorithm Contd.

• Recall what inputs ∣x⟩ and ∣y⟩ were after initial Hadamards

Balanced = |1⟩
Constant = |0⟩

(1)

(2)

(3)

(4)

When measure to get result!

∣y⟩

What we need to know



Deutsch Simulations



Deconstructing Deutsch – Intuition

• What did it take? 

1. Algorithm/idea: 
• f(0) xor f(1) gives the result of whether f(x) is balanced or not

2. Cleverly using quantum computer:
• Quantum parallelism – compute on superposition of basis states (prepared by/after the 

Hadamard gates) – SIMD like

• Yielded result (Uf) had both f(0) and f(1) in it; in fact it had f(0) xor f(1)!
• Uf is black box/oracle - f(x) but made reversible 
• Interfere/Bias - Why Hadamard at the end? Recognizing that |x�after Uf step is either 

H|1� or H|0� based on the result of f(0) xor f(1).  Can map back to basis (preparing for 
a measurement) by H again: to ∣0⟩ if f is constant and ∣1⟩ balanced. 

• Lesson: we need to think in terms of quantum parallelism & reduce result 
to global property combining simultaneous evaluations of f. 

Balanced = |1⟩
Constant = |0⟩



Deutsch-Jozsa (1996)



No Cloning, Power of Entanglement

• No cloning theorem – no ways to create a copy of |⍦�- this is a 
disadvantage vs classical computing
• There is, however, a way to assign a state to another qubit; needs entanglement ... only 

one version can exist at the time

• Entanglement – state of qubits where they are correlated; one cannot 
express/decompose to tensor product of individual states (recall we used 
the tensor product for the joint state of two qubits)

• EPR pair – after Einsten, Podolsky, and Rosen

|⍦�= 



Secret Sharing, State Assignment, Teleportation

• One qubit is Alice’s and one Bob’s. They entangle them as shown.

• They take them each home J

• Alice has another secret qubit |ψ⟩ = α0|0⟩ + α1|1⟩, wants to give it to Bob
• Problem: 

• α0 , α1 cannot be extracted – measurement would destroy |ψ⟩
• Even if possible, at what precision? Complex numbers…many many bits. 

• Is it possible?

(O’Donnel, 2015)



Secret Sharing, State Assignment, Teleportation

• Alice can send |ψ⟩ with following circuit

• Let us see joint state before the CNOT

• Then passes through the CNOT + H gates; joint three-qubit state:

• Now ALICE measures her two qubits (top two in figure) 

(1)

(2)



Secret Sharing, State Assignment, Teleportation

• Note that independent of ALICE’s measurement Bob’s state is equal or close 
to Alice’s |ψ⟩!

• There is a unitary transformation (gate) for each case  to |ψ⟩
• E.g., second row needs a NOT gate 
• third one a                      fourth  one a

• Note this is a secret sharing approach. Alice needs to call the result of her 
measurement and Bob applies corresponding U
• First verified in 1992 by Bennett. In 2012, Ma, et. al., performed quantum teleportation at a 

distance of 143 kilometers. 

(O’Donnel, 2015)

Bob’s

Alice’s



Quantum Entanglement? 
Coupled for eternity…transcending time, space

(Photography of Thomas Barbey) 



Shor’s Algorithm
1994

• Alg. Idea: calculate instead the period r of modular exponentiation. 

• Math (simplified):

• ! " = $% &'( ), $ +$,('&; period r smallest int. such as ! " + + = ! "
• Classically compute prime factors as gcd $

1
2 + 1,) $,( gcd($

1
2 − 1,))

• How to calculate r?

• Quantum circuit (see pattern S-Uf-I-M) custom for each N, a
• First part superposition, then next calculates f(x) with quantum parallelism

• QFT gets you a number that is multiple of the inverse of r … (22n/r) => rest classically 

Given an integer N, 

find its prime factors

S (modular MUL circuits ) Interfere M

f(x) = ax mod N



Shor’s Derivation (n top register 
assumed). Note I show for any 
periodic f(x) 

(1) (2)

(3)

(4)

(5)

i.e., result will be multiple of 2n/r (7)

r is period

Derivation follows (A. Dawar, Cambridge U)

is an integer (6)Maxed if

|⍦�=

(after measurement of f(x))

(after applying DQFT on top register)

(collapsed joint state)

(after measurement of top register)

n

n
H D M2

M

f(x)

f0

~2n/r



Shor’s Algorithm Q Circuit

• Alexey Kitaev implementation: ~10d qubits (d is digits in N) and ~d3 in 
gates

~2000 CPU 
Years

232

(IBM Q Doc)

~26 hours
(2048 bits
~600+ d)



Impact on Today’s Privacy, Security

• It will take around 26.7 hours for 2048 bits RSA (~600 digits) to be 

broken. Without fault tolerance it needs ~200M gates and ~6000 qubits.

• Also, a derivative of Shor’s can be used to break ECC elliptic curve 
cryptography by computing discrete logarithms on a 
hypothetical quantum computer. 

• The latest estimates for breaking a curve with a 256-bit modulus with 
128-bit security level are 2330 qubits.

• Fault tolerance needs can significantly increase these numbers.



So, How Do You Design a Q Algorithm?

• Magic a la Ramanujan?

• Possible way to think (~ the 3Bs of Eagalman):

• Find an f(x) as part of your problem, its global property, preprocess in classical  

1. Setup superposition state(s) on input register
2. Calculate simultaneously (SIMD) w/ quantum parallelism f(x) 
3. Bias/Interfere, Initial Measurement - Bias state. Find way to expose metric across 

function outputs, a global property of f(x), to help solve what you need. 

• Measure f(x) … typical entanglement (f(x), x), f(x) property reveals itself in x.
4. Ready to Measure Result 
• The basis state that is most likely, must indicate your global property

• Finish classical



Design Requirements for a Q Computer

• The DiVincenzo Criteria for Q Hardware: 
• (i) scalable physical system with well-characterized qubits, 
• (ii) ability to initialize the state of the qubits, 
• (iii) "universal" set of quantum gates, 
• (iv) long relevant decoherence times, much longer than the gate-operation time, 
• (v) a qubit-specific measurement.

• Additionally, for overall system:
• Q Compiler to generate from Q Program/Classical - sequence of gates w/ QEC
• Classical CPU + Co-Processor w/ Controller to manage Q Hardware IO
• Adequate fault tolerance - the threshold theorem:

• Arbitrarily long Q computation with arbitrary reliability can be executed, if the error rates of Q 
gates are under a critical accuracy threshold. If decoherence only source, then robust 
computation requires decoherence 104 times longer than 1 Q gate delay

(E. Dennis, arxiv) 



Why Use Q Tools/Compiler?

• Why not design algorithm and then create circuit manually?

• Does not scale

• Beyond convenience (complexity), 3 primary problems to optimize
1. Space – # of qubits needed 
• Gate sequences, Q oracles, QEC, manage ancillas/uncomputes; classical

2. Time – decoherence, sequence of gates, precision 
3. Errors – how much error correction and where? 
• Maximize probability of correct interpretation 



Q Compilers

• Classical code and embedded quantum program (EDSL)
• After the high-level compilation stage, the code consists of quantum gates, 

inlined library functions, and library calls to be resolved later  
• Low- level compiler is to translate all quantum gates into sequences of gates 

from a discrete, technology-dependent set., & add QEC 

High Level Low Level (Haner, 2016)



Prepare for Q Circuit Instantiation and  Q 
Program Analysis
• Prepare circuits: have inputs and oracle gates specified, +QEC

• Q Libraries can be ready but oracle needs to be generated (like in RTL)
• May need to generate multiple circuits at different sizes, inputs 

• Function inlining
• Loop unrolling
• Constant folding 
• Constant propagation

• Quantum Program Analysis: data-flow to check on entangled states, verify 
incorrect copying/assignment, resource utilization (incl ancillas), check 
uncomputes, estimate critical path 

Partial Execution
Flattening



ScaffCC (C Front)

(Abhary, 2014)

Allows using 
of classical 
gates

Toffoli, rotations
replaced w/
subcircuits

Q Program 
Analyses 
on LLVM

LLVM 
Intermediate
Format

Scaffold code



Low-level Optimizations, Error Handling

• Logical qubits to physical qubits (e.g. for QASM or hardware)
• Need to add redundancy/fault tolerance for state errors
• Success – correct “interpretation” of results
• Quantum Error Correction codes – bitflips and phase, QEC Logical qubits 

• Challenge – no state copies can be kept, hard to judge/detect due to measurement; 
need to use ancillas and syndrome information

EC-1-bit flip error(Nemeto, 2013) Part of 9-qubit code, Shor’s, 1995



Fragment of Shor’s Syndrome Based QEC-
with Q Circuit Simulator

Error

Error

Error



Error Detection w/ Post-Select, Reset, Rerun

• Detect but not correct (00 state = no errors); no info. to correct

Detect

Figure from (Nemeto, 2013)



Stabilizer Formalism – Stabilizer Codes

• Enables easy synthesis of correction circuits/logical operations in Q 
compilers. E.g., 7 physical qubits for one logical. 6 Stabilizers are 
measured for single X (bit flip) or Z (phase flip)  errors. 

7-qubit Steane code, 1996Figure from (Nemeto, 2013)

Classical
(1) (2)



Envisioned Runtime Models

• Batch (Static)
• Set up and run Q algorithm interleaved with regular codes statically

• Trace based and w/ constant propagation – need circuit specified out
• TBytes of code

• Dynamic Execution
• Dynamically choose what to run - Interleave classical + Q arbitrarily 

• E.g., Post-selected error correction; which bit to add the X gate on out of 3

• Dynamic Compilation  
• Generate new circuit based on result of Q subroutine (measurement)



Is Dynamic Compilation a Must?

• Static version not always possible or best 

• Phase estimation relying algorithms – phase needed to be extracted for 
next part of Q algorithm 
• Like in solving Linear Systems, Shortest Vector Algorithm 
• Angle of rotation depends on a measurement  

• Note that even in Shor’s; assumed that a static approach would work as 
phase rotations can be pre-generated (again code size! TBs of code, 
1000s of high precision rotations)

• Tight coupling of QHW-CHW in modern QEC like Surface codes
• Adjust next phase of computation, compensate for errors detected



Code Size, Runtime Cost of Precision & QEC  

• Ground State Estimation algorithm for Fe
2
S

2
for example requires 10

14

rotations, each approximated with 10
5

gates. That is 10
19

!!!

• Dynamic compilation for a given phase precision based on static Solovay-

Kitaev algorithm too slow 

• Initial work by Kudrow 5X improvement by classical optimizations

• FP precision may not be adequate…

(Kudrow et al, 2013 ISCA)

“… the high error-correction 
overhead of quantum computers 
can make the crossover point 
between polynomial and 
exponential performance occur at 100 
years of computation” 

T Gate time; Bacon-Shor L2 QEC - 2 + orders slowdown



Microarchitecture 
Support – QuMA - Adds 
Abstractions

• Four concepts: (i) code-words (machine code), (ii) queue-based based timing; (iii)  quantum 
instructions -> microcode -> code-words;  (iv) QuMIS is a quantum microinstruction set. 
Validated on one super-cond Qb.
• Manage events/timing, create analog control signals (pulses, wafeforms, coded in code-words)

(Fu, 2017)

(Hornibrook, 2015)



Implementation w/ 4 FPGA Boards (Fu, 2017)
• Master w/ Altera 
Cyclone V 5CEFA9 FPGA chip, 
8-bit ADC (for data from Q chip)
• 3 X boards - two-channel 
arbitrary waveform generator 
(AWG) each on Terasic
DE0-Nano w/ 
Altera Cyclone IV EP4CE22F;
2X 14-bit DAC for qubit pulses

• 20 ns from codeword to ctrl 



State-of-the-Art
(Dec 2018) 

• Simulator (best 56 qubits)
• Microsoft’s with Intel’s AVX extensions. Plans “Brainwave” FPGA-based AI accelerator retargeted for 

Q. ATOS builds custom acceleration. 
• IBM 56-qubit general-purpose q system on a supercomputer. Harvard-MIT and the CALTECH 

simulated a 51-qubit quantum computer, but was not general-purpose. European researchers from 
Jülich Supercomputing Centre, Wuhan University, and the University of Groningen simulated a 46-
qubits.

• Quantum Hardware (best 50 qubits at IBM, 72 at Google)
• IBM 20-qubit chip in late 2017, internally tested a 50-qubit chip 
• Intel showed a 49-qubit chip at 2018 at the Consumer Electronics Show (CES). 
• Rigetti has19-qubit chip available for cloud access 
• Google Bristlecone 72 qubit in 2018 March

• Tool chain (widely available)
• IBM Q Network QISKit API (1500 Univ, 35 papers), University tools based on LLVM (Scaffold, 

Haskell), NVIDIA QUDA, Microsoft Visual Studio IDE 



Summary (+ Answer to Title Question)
Classical Computer Quantum Computer (Future)

Bits  (N bits “store” one of 2N) Qubits (Linear combination 2N basis st)

Universal gate sets, Turing Machine, von Neumann, many-
cores; Boolean  

Quantum Universal gate sets, Quantum Turing Machine; 
Hilbert space

Classical inputs, outputs. I/O digital Same nr of classical inputs, outputs. No loops, no copies. 
Reversible. I/O analog

Limited Data (SIMD), Instruction (ILP) and Task/Function 
Parallelism (TLP/FLP)
Pipelining, caching. 

(Almost) unlimited 2n SIMD Quantum Parallelism. 
(Tricks w/ entanglement, interference. Result: just global 
property)

Reliability: 
Perfect (almost)

High Error Rate. Surface QEC: 103-104 X overhead. 95%+ of 
work for errors. Skepticism on large QC w/ 10M-1B Qb. 

Advanced 
Compilers

Initial flows – must deal w/ code size explosion, dataflow 
likely hard. Q Co-processors to manage tight dynamic. 

Easy to write code, design algorithms Can be mastered ! !  Do we need to find killer applications 
for small QC?



Summary on Security, Privacy

• RSA, ECC easily broken would large scale quantum computer materialize.
• All email and messaging apps that rely on encryption alone.
• Financial transactions, defense related communications.
• All internet traffic.

• New methods are needed to encrypt or by utilizing ideas that do not fully 
rely on digital solutions alone 
• see EPRIVO physical separation approach.
• Post quantum encryption algorithms.
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Thomas Barbey
photography
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